Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Lancet Respir Med ; 2022 Oct 04.
Article in English | MEDLINE | ID: covidwho-2311608

ABSTRACT

The widespread use of smartphones and the internet has enabled self-monitoring and more hybrid-care models. The COVID-19 pandemic has further accelerated remote monitoring, including in the heterogenous and often vulnerable group of patients with interstitial lung diseases (ILDs). Home monitoring in ILD has the potential to improve access to specialist care, reduce the burden on health-care systems, improve quality of life for patients, identify acute and chronic disease worsening, guide treatment decisions, and simplify clinical trials. Home spirometry has been used in ILD for several years and studies with other devices (such as pulse oximeters, activity trackers, and cough monitors) have emerged. At the same time, challenges have surfaced, including technical, analytical, and implementational issues. In this Series paper, we provide an overview of experiences with home monitoring in ILD, address the challenges and limitations for both care and research, and provide future perspectives. VIDEO ABSTRACT.

2.
Respir Res ; 23(1): 307, 2022 Nov 11.
Article in English | MEDLINE | ID: covidwho-2119336

ABSTRACT

BACKGROUND: Patients with interstitial lung disease (ILD) require regular physician visits and referral to specialist ILD clinics. Difficulties or delays in accessing care can limit opportunities to monitor disease trajectory and response to treatment, and the COVID-19 pandemic has added to these challenges. Therefore, home monitoring technologies, such as home handheld spirometry, have gained increased attention as they may help to improve access to care for patients with ILD. However, while several studies have shown that home handheld spirometry in ILD is acceptable for most patients, data from clinical trials are not sufficiently robust to support its use as a primary endpoint. This review discusses the challenges that were encountered with handheld spirometry across three recent ILD studies, which included home spirometry as a primary endpoint, and highlights where further optimisation and research into home handheld spirometry in ILD is required. Rate of decline in forced vital capacity (FVC) as measured by daily home handheld spirometry versus site spirometry was of primary interest in three recently completed studies: STARLINER (NCT03261037), STARMAP and a Phase II study of pirfenidone in progressive fibrosing unclassifiable ILD (NCT03099187). Unanticipated practical and technical issues led to problems with estimating FVC decline. In all three studies, cross-sectional correlations for home handheld versus site spirometry were strong/moderate at baseline and later timepoints, but longitudinal correlations were weak. Other issues observed with the home handheld spirometry data included: high within-patient variability in home handheld FVC measurements; implausible longitudinal patterns in the home handheld spirometry data that were not reflected in site spirometry; and extreme estimated rates of FVC change. CONCLUSIONS: Home handheld spirometry in ILD requires further optimisation and research to ensure accurate and reliable FVC measurements before it can be used as an endpoint in clinical trials. Refresher training, automated alerts of problems and FVC changes, and patient support could help to overcome some practical issues. Despite the challenges, there is value in incorporating home handheld spirometry into clinical practice, and the COVID-19 pandemic has highlighted the potential for home monitoring technologies to help improve access to care for patients with ILD.


Subject(s)
COVID-19 , Lung Diseases, Interstitial , Humans , COVID-19/diagnosis , Cross-Sectional Studies , Pandemics , Lung Diseases, Interstitial/diagnosis , Lung Diseases, Interstitial/drug therapy , Spirometry , Vital Capacity , Disease Progression , Clinical Trials, Phase II as Topic
3.
Am J Respir Crit Care Med ; 205(9): 1084-1092, 2022 05 01.
Article in English | MEDLINE | ID: covidwho-1832814

ABSTRACT

Rationale: Chronic cough remains a major and often debilitating symptom for patients with idiopathic pulmonary fibrosis (IPF). In a phase 2A study, inhaled RVT-1601 (cromolyn sodium) reduced daytime cough and 24-hour average cough counts in patients with IPF. Objectives: To determine the efficacy, safety, and optimal dose of inhaled RVT-1601 for the treatment of chronic cough in patients with IPF. Methods: In this multicenter, randomized, placebo-controlled phase 2B study, patients with IPF and chronic cough for ⩾8 weeks were randomized (1:1:1:1) to receive 10, 40, and 80 mg RVT-1601 three times daily or placebo for 12 weeks. The primary endpoint was change from baseline to end of treatment in log-transformed 24-hour cough count. Key secondary endpoints were change from baseline in cough severity and cough-specific quality of life. Safety was monitored throughout the study. Measurements and Main Results: The study was prematurely terminated owing to the impact of the coronavirus disease (COVID-19) pandemic. Overall, 108 patients (mean age 71.0 years, 62.9% males) received RVT-1601 10 mg (n = 29), 40 mg (n = 25), 80 mg (n = 27), or matching placebo (n = 27); 61.1% (n = 66) completed double-blind treatment. No statistically significant difference was observed in the least-square mean change from baseline in log-transformed 24-hour average cough count, cough severity, and cough-specific quality of life score between the RVT-1601 groups and the placebo group. The mean percentage change from baseline in 24-hour average cough count was 27.7% in the placebo group. Treatment was generally well tolerated. Conclusions: Treatment with inhaled RVT-1601 (10, 40, and 80 mg three times a day) did not provide benefit over placebo for the treatment of chronic cough in patients with IPF.


Subject(s)
COVID-19 , Idiopathic Pulmonary Fibrosis , Aged , Chronic Disease , Cough/complications , Cough/etiology , Double-Blind Method , Female , Humans , Idiopathic Pulmonary Fibrosis/complications , Idiopathic Pulmonary Fibrosis/drug therapy , Male , Quality of Life , Treatment Outcome
4.
ERJ Open Res ; 7(3)2021 Jul.
Article in English | MEDLINE | ID: covidwho-1394412

ABSTRACT

The #COVID19 pandemic has led to an increase in the use of eHealth for patients with interstitial lung disease. Healthcare providers worldwide are positive towards further implementation of eHealth for research and clinical practice. https://bit.ly/3h2545M.

5.
EBioMedicine ; 69: 103439, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1275277

ABSTRACT

BACKGROUND: COVID-19 has been associated with Interstitial Lung Disease features. The immune transcriptomic overlap between Idiopathic Pulmonary Fibrosis (IPF) and COVID-19 has not been investigated. METHODS: we analyzed blood transcript levels of 50 genes known to predict IPF mortality in three COVID-19 and two IPF cohorts. The Scoring Algorithm of Molecular Subphenotypes (SAMS) was applied to distinguish high versus low-risk profiles in all cohorts. SAMS cutoffs derived from the COVID-19 Discovery cohort were used to predict intensive care unit (ICU) status, need for mechanical ventilation, and in-hospital mortality in the COVID-19 Validation cohort. A COVID-19 Single-cell RNA-sequencing cohort was used to identify the cellular sources of the 50-gene risk profiles. The same COVID-19 SAMS cutoffs were used to predict mortality in the IPF cohorts. FINDINGS: 50-gene risk profiles discriminated severe from mild COVID-19 in the Discovery cohort (P = 0·015) and predicted ICU admission, need for mechanical ventilation, and in-hospital mortality (AUC: 0·77, 0·75, and 0·74, respectively, P < 0·001) in the COVID-19 Validation cohort. In COVID-19, 50-gene expressing cells with a high-risk profile included monocytes, dendritic cells, and neutrophils, while low-risk profile-expressing cells included CD4+, CD8+ T lymphocytes, IgG producing plasmablasts, B cells, NK, and gamma/delta T cells. Same COVID-19 SAMS cutoffs were also predictive of mortality in the University of Chicago (HR:5·26, 95%CI:1·81-15·27, P = 0·0013) and Imperial College of London (HR:4·31, 95%CI:1·81-10·23, P = 0·0016) IPF cohorts. INTERPRETATION: 50-gene risk profiles in peripheral blood predict COVID-19 and IPF outcomes. The cellular sources of these gene expression changes suggest common innate and adaptive immune responses in both diseases. FUNDING: This work was supported in part by National Institute for Health Research Clinician Scientist Fellowship NIHR: CS-2013-13-017 (TMM); Action for Pulmonary Fibrosis Mike Bray fellowship (PLM); The National Heart, Lung, and Blood Institute (NHLBI) through award K01-HL-130704 (AJ); The University of South Florida (USF) Academic Support Fund and the USF Foundation, Ubben Fibrosis Fund (JHM).


Subject(s)
COVID-19/genetics , Transcriptome , Adult , Aged , Biomarkers/blood , COVID-19/blood , COVID-19/mortality , Female , Hospital Mortality , Humans , Male , Middle Aged , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL